Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612543

RESUMO

Preeclampsia (PE) is a hypertensive disease characterized by proteinuria, endothelial dysfunction, and placental hypoxia. Reduced placental blood flow causes changes in red blood cell (RBC) rheological characteristics. Herein, we used microfluidics techniques and new image flow analysis to evaluate RBC aggregation in preeclamptic and normotensive pregnant women. The results demonstrate that RBC aggregation depends on the disease severity and was higher in patients with preterm birth and low birth weight. The RBC aggregation indices (EAI) at low shear rates were higher for non-severe (0.107 ± 0.01) and severe PE (0.149 ± 0.05) versus controls (0.085 ± 0.01; p < 0.05). The significantly more undispersed RBC aggregates were found at high shear rates for non-severe (18.1 ± 5.5) and severe PE (25.7 ± 5.8) versus controls (14.4 ± 4.1; p < 0.05). The model experiment with in-vitro-induced oxidative stress in RBCs demonstrated that the elevated aggregation in PE RBCs can be partially due to the effect of oxidation. The results revealed that RBCs from PE patients become significantly more adhesive, forming large, branched aggregates at a low shear rate. Significantly more undispersed RBC aggregates at high shear rates indicate the formation of stable RBC clusters, drastically more pronounced in patients with severe PE. Our findings demonstrate that altered RBC aggregation contributes to preeclampsia severity.


Assuntos
Pré-Eclâmpsia , Nascimento Prematuro , Recém-Nascido , Gravidez , Feminino , Humanos , Microfluídica , Placenta , Estresse Oxidativo , Gravidade do Paciente , Eritrócitos
2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37762599

RESUMO

Neurodegenerative disorders (NDDs) are complex, multifactorial disorders with significant social and economic impact in today's society. NDDs are predicted to become the second-most common cause of death in the next few decades due to an increase in life expectancy but also to a lack of early diagnosis and mainly symptomatic treatment. Despite recent advances in diagnostic and therapeutic methods, there are yet no reliable biomarkers identifying the complex pathways contributing to these pathologies. The development of new approaches for early diagnosis and new therapies, together with the identification of non-invasive and more cost-effective diagnostic biomarkers, is one of the main trends in NDD biomedical research. Here we summarize data on peripheral biomarkers, biofluids (cerebrospinal fluid and blood plasma), and peripheral blood cells (platelets (PLTs) and red blood cells (RBCs)), reported so far for the three most common NDDs-Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). PLTs and RBCs, beyond their primary physiological functions, are increasingly recognized as valuable sources of biomarkers for NDDs. Special attention is given to the morphological and nanomechanical signatures of PLTs and RBCs as biophysical markers for the three pathologies. Modifications of the surface nanostructure and morphometric and nanomechanical signatures of PLTs and RBCs from patients with AD, PD, and ALS have been revealed by atomic force microscopy (AFM). AFM is currently experiencing rapid and widespread adoption in biomedicine and clinical medicine, in particular for early diagnostics of various medical conditions. AFM is a unique instrument without an analog, allowing the generation of three-dimensional cell images with extremely high spatial resolution at near-atomic scale, which are complemented by insights into the mechanical properties of cells and subcellular structures. Data demonstrate that AFM can distinguish between the three pathologies and the normal, healthy state. The specific PLT and RBC signatures can serve as biomarkers in combination with the currently used diagnostic tools. We highlight the strong correlation of the morphological and nanomechanical signatures between RBCs and PLTs in PD, ALS, and AD.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Esclerose Lateral Amiotrófica/diagnóstico , Doença de Alzheimer/diagnóstico , Microscopia de Força Atômica , Células Sanguíneas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA